4 resultados para autoimmunity

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by several recent experimental observations that vitamin-D could interact with antigen presenting cells (APCs) and T-lymphocyte cells (T-cells) to promote and to regulate different stages of immune response, we developed a coarse grained but general kinetic model in an attempt to capture the role of vitamin-D in immunomodulatory responses. Our kinetic model, developed using the ideas of chemical network theory, leads to a system of nine coupled equations that we solve both by direct and by stochastic (Gillespie) methods. Both the analyses consistently provide detail information on the dependence of immune response to the variation of critical rate parameters. We find that although vitamin-D plays a negligible role in the initial immune response, it exerts a profound influence in the long term, especially in helping the system to achieve a new, stable steady state. The study explores the role of vitamin-D in preserving an observed bistability in the phase diagram (spanned by system parameters) of immune regulation, thus allowing the response to tolerate a wide range of pathogenic stimulation which could help in resisting autoimmune diseases. We also study how vitamin-D affects the time dependent population of dendritic cells that connect between innate and adaptive immune responses. Variations in dose dependent response of anti-inflammatory and pro-inflammatory T-cell populations to vitamin-D correlate well with recent experimental results. Our kinetic model allows for an estimation of the range of optimum level of vitamin-D required for smooth functioning of the immune system and for control of both hyper-regulation and inflammation. Most importantly, the present study reveals that an overdose or toxic level of vitamin-D or any steroid analogue could give rise to too large a tolerant response, leading to an inefficacy in adaptive immune function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interferon-gamma (IFN gamma) is a central regulator of the immune response and signals via the Janus Activated Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT) pathway. Phosphorylated STAT1 homodimers translocate to the nucleus, bind to Gamma Activating Sequence (GAS) and recruit additional factors to modulate gene expression. A bioinformatics analysis revealed that greater number of putative promoters of immune related genes and also those not directly involved in immunity contain GAS compared to response elements (RE) for Interferon Regulatory Factor (IRF)1, Nuclear factor kappa B (NF kappa B) and Activator Protein (AP)1. GAS is present in putative promoters of well known IFN gamma-induced genes, IRF1, GBP1, CXCL10, and other genes identified were TLR3, VCAM1, CASP4, etc. Analysis of three microarray studies revealed that the expression of asubset of only GAS containing immune genes were modulated by IFN gamma. As a significant correlation exists between GAS containing immune genes and IFN gamma-regulated gene expression, this strategy may identify novel IFN gamma-responsive immune genes. This analysis is integrated with the literature on the roles of IFN gamma in mediating a plethoraof functions: anti-microbial responses, antigen processing,inflammation, growth suppression, cell death, tumor immunity and autoimmunity. Overall, this review summarizes our present knowledge onIFN gamma mediated signaling and functions. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a combination of avidin-biotin microELISA and solid phase radioimmunoassay, we examined sera from 23 patients with systemic lupus erythematosus (SLE), two patients with established sensitivity to ingested shrimp, and 15 healthy normal subjects. In addition to IgG antibodies, varying amounts of IgE antibodies specific for native DNA (nDNA), denatured or single-stranded DNA (dnDNA), RNA, and tRNA were demonstrable in the sera of SLE patients, but not in the sera of normal subjects. A comparison of the specificity of nucleic acid-specific IgE antibodies present in the sera of shrimp-sensitive patients with those present in the sera of seven SLE patients revealed that the IgE antibodies in the sera of shrimp-sensitive patients specifically recognized shrimp tRNA but not yeast tRNA, calf thymus RNA, or calf thymus DNA, while those present in the sera of patients with SLE recognized all these nucleic acid antigens. The IgE antibodies directed against nDNA, dnDNA, RNA, and tRNA may mediate mast cell and basophil degranulation and thus contribute both to immediate-type hypersensitivity phenomena including hives seen in patients with SLE and to the localization of IgE-nucleic acid complexes in target

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abzymes are immunoglobulins endowed with enzymatic activities. The catalytic activity of an abzyme resides in the variable domain of the antibody, which is constituted by the close spatial arrangement of amino acid residues involved in catalysis. The origin of abzymes is conferred by the innate diversity of the immunoglobulin gene repertoire. Under deregulated immune conditions, as in autoimmune diseases, the generation of abzymes to self-antigens could be deleterious. Technical advancement in the ability to generate monoclonal antibodies has been exploited in the generation of abzymes with defined specificities and activities. Therapeutic applications of abzymes are being investigated with the generation of monoclonal abzymes against several pathogenesis-associated antigens. Here, we review the different contexts in which abzymes are generated, and we discuss the relevance of monoclonal abzymes for the treatment of human diseases.